Part Number Hot Search : 
EL2227 G103MSE G103MSE 74CBT 40E0X 856062 AK5720VT FJ2803
Product Description
Full Text Search
 

To Download HCPL-M452 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  small outline, 5 lead, high speed optocouplers technical data HCPL-M452 hcpl-m453 features ?surface mountable ?very small, low profile jedec registered package outline ?compatible with infrared vapor phase reflow and wave soldering processes ?very high common mode transient immunity: 15000 v/ s at v cm = 1500 v guaranteed (hcpl-m453) ?high speed: 1 mb/s ?ttl compatible ?guaranteed ac and dc performance over temperature: 0 c to 70 c ?open collector output ?recognized under the component program of u.l. (file no. e55361) for dielectric withstand proof test voltage of 3750 vac, 1 minute ?lead free option caution: the small device geometries inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (esd). it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. the so-5 jedec registered (mo-155) package outline does not require ?hrough holes?in a pcb. this package occupies approximately one-fourth the footprint area of the standard dual-in-line package. the lead profile is designed to be compatible with standard surface mount processes. these diode-transistor optocouplers use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times so-5 package standard dip so-8 package HCPL-M452 hcpl-4502 hcpl-0452 hcpl-m453 hcpl-4503 hcpl-0453 (note: these devices equivalent to 6n135/6n136 devices but without the base lead.) description these small outline high cmr, high speed, diode-transistor opto- couplers are single channel devices in a five lead miniature footprint. they are electrically equivalent to the following agilent optocouplers:
2 tions. a standard 16 ma ttl sink current through the input led will provide enough output current for 1 ttl load and a 5.6 k ? pull-up resistor. ctr of the HCPL-M452 is 19% minimum at i f = 16 ma. over that of a conventional photo-transistor coupler by reducing the base-collector capacitance. the HCPL-M452 is designed for high speed ttl/ttl applica- the hcpl-m453 is an hcpl- m452 with increased common mode transient immunity of 15,000 v/ s minimum at v cm = 1500 v guaranteed. applications ?line receivers - high common mode transient immunity (>1000 v/ s) and low input-output capacitance (0.6 pf). ?high speed logic ground isolation - ttl/ttl, ttl/ lttl, ttl/cmos, ttl/ lsttl. ?replace slow phototran- sistor optocouplers ?replace pulse transformers - save board space and weight ?analog signal ground isolation - integrated photon detector provides improved linearity over phototransistor type. land pattern recommendation dimensions in millimeters and (inches) outline drawing (jedec mo-155) schematic i f shield 6 5 4 gnd v cc 1 3 v o i cc v f i o anode cathode + mxxx xxx 6 5 4 3 1 7.0 0.2 (0.276 0.008) 2.5 0.1 (0.098 0.004) 0.102 0.102 (0.004 0.004) v cc v out gnd cathode anode 4.4 0.1 (0.173 0.004) 1.27 (0.050) bsc 0.15 0.025 (0.006 0.001) 0.71 (0.028) min. 0.4 0.05 (0.016 0.002) 3.6 0.1* (0.142 0.004) dimensions in millimeters (inches) * maximum mold flash on each side is 0.15 mm (0.006) note: floating lead protrusion is 0.15 mm (6 mils) max. 7 max. max. lead coplanarity = 0.102 (0.004) 8.27 (0.325) 2.0 (0.080) 2.5 (0.10) 1.3 (0.05) 0.64 (0.025) 4.4 (0.17)
3 absolute maximum ratings (no derating required up to 85 c) storage temperature ................................................. -55 c to +125 c operating temperature ............................................. -55 c to +100 c average input current - i f ..................................................... 25 ma [1] peak input current - i f ........................................................... 50 ma [2] (50% duty cycle, 1 ms pulse width) peak transient input current - i f .............................................. 1.0 a ( 1 s pulse width, 300 pps) reverse input voltage - v r (pin3-1) ............................................... 5 v input power dissipation ........................................................ 45 mw [3] average output current - i o (pin 5) ........................................... 8 ma peak output current ................................................................. 16 ma output voltage - v o (pin 5-4) ........................................ -0.5 v to 20 v supply voltage - v cc (pin 6-4) ....................................... -0.5 v to 30 v output power dissipation .................................................... 100 mw [4] infrared and vapor phase reflow temperature .................. see below solder reflow thermal profile recommended pb-free ir profile 0 time (seconds) temperature ( c) 200 100 50 150 100 200 250 300 0 30 sec. 50 sec. 30 sec. 160 c 140 c 150 c peak temp. 245 c peak temp. 240 c peak temp. 230 c soldering time 200 c preheating time 150 c, 90 + 30 sec. 2.5 c 0.5 c/sec. 3 c + 1 c/ 0.5 c tight typical loose room temperature preheating rate 3 c + 1 c/ 0.5 c/sec. reflow heating rate 2.5 c 0.5 c/sec. 217 c ramp-down 6 c/sec. max. ramp-up 3 c/sec. max. 150 - 200 c 260 +0/-5 c t 25 c to peak 60 to 150 sec. 20-40 sec. time within 5 c of actual peak temperature t p t s preheat 60 to 180 sec. t l t l t smax t smin 25 t p time temperature notes: the time from 25 c to peak temperature = 8 minutes max. t smax = 200 c, t smin = 150 c
4 electrical specifications over recommended temperature (t a = 0 c to 70 c) unless otherwise specified. (see note 11.) parameter symbol min. typ.* max. units test conditions fig. note current ctr 20 24 50 % t a = 25 cv o = 0.4 v v cc = 4.5 v 1, 2, 5 15 25 v o = 0.5 v 4 logic low v ol 0.1 0.4 v t a = 25 ci o = 3.0 ma 0.5 i o = 2.4 ma logic high i oh 0.003 0.5 at a = 25 cv o = v cc = 5.5 v 7 0.01 1 t a = 25 cv o = v cc = 15.0 v 50 i f = 0 ma logic low i ccl 50 200 i f = 16 ma, v o = open, 11 supply v cc = 15 v current logic high i cch 0.02 1 t a = 25 ci f = 0 ma, v o = open, 11 2 input forward v f 1.5 1.7 v t a = 25 c3 1.8 i f = 16 ma input reverse bv r 5i r = 10 a breakdown voltage temperature ? v f / ? t a -1.6 mv/ ci f = 16 ma coefficient of forward voltage input c in 60 pf f = 1 mhz, v f = 0 capacitance input-output v iso 3750 v rms rh 50%, t = 1 min., t a = 25 c 6, 7 insulation resistance r i-o 10 12 ? v i-o = 500 v dc 6 (input-output) capacitance c i-o 0.6 pf f = 1 mhz 6 (input-output) *all typicals at t a = 25 c. output voltage supply current i f = 16 ma voltage transfer ratio v cc = 15.0 v output current insulation related specifications parameter symbol value units conditions min external air gap l(io1) 5 mm measured from input terminals (clearance) to output terminals min. external tracking path l(io2) 5 mm measured from input terminals (creepage) to output terminals min. internal plastic gap 0.08 mm through insulation distance (clearance) conductor to conductor tracking resistance cti 175 v din iec 112/vde 0303 part 1 isolation group (per din vde 0109) iiia material group din vde 0109
5 switching specifications over recommended temperature (t a = 0 c to 70 c) v cc = 5 v, i f = 16 ma unless otherwise specified. parameter symbol device min. typ.* max. units test conditions fig. note propagation t phl 0.2 0.8 st a = 25 c 5, 6, 9 delay time r l = 1.9 k ? 10 to logic low at output propagation t plh 0.6 0.8 t a = 25 c 5, 6, 9 delay time r l = 1.9 k ? 10 to logic high at output common |cm h | hcpl- 1 kv/ sv cm = 10 v p-p 11 8, 9 mode m452 transient immunity at hcpl- 15 30 v cm = 1500 v p-p logic high m453 level output common |cm l | hcpl- 1 v cm = 10 v p-p 11 8, 9 mode m452 transient immunity at hcpl- 15 30 v cm = 1500 v p-p logic low m453 level output bandwidth bw 3 mhz r l = 100 ? , see test circuit 8, 9 10 all typicals at t a = 25 c. 1.0 1.0 notes: 1. derate linearly above 85 c free-air temperature at a rate of 0.5 ma/ c. 2. derate linearly above 85 c free-air temperature at a rate of 1.0 ma/ c. 3. derate linearly above 85 c free-air temperature at a rate of 1.1 mw/ c. 4. derate linearly above 85 c free-air temperature at a rate of 2.3 mw/ c. 5. current transfer ratio in percent is defined as the ratio of output collector current, i o , to the forward led input current, i f , times 100. 6. device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together. 7. in accordance with ul 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 v rms for 1 second (leakage detection current limit, i i-o 5 a). 8. common transient immunity in a logic high level is the maximum tolerable (positive) dv cm /dt on the rising edge of the common mode pulse, v cm , to assure that the output will remain in a logic high state (i.e., v o > 2.0 v). common mode transient immunity in a logic low level is the maximum tolerable (negative) dv cm /dt on the falling edge of the common mode pulse signal, v cm to assure that the output will remain in a logic low state (i.e., v o < 0.8 v). 9. the 1.9 k ? load represents 1 ttl unit load of 1.6 ma and the 5.6 k ? pull-up resistor. 10. the frequency at which the ac output voltage is 3 db below its mid-frequency value. 11. use of a 0.1 f bypass capacitor connected between pins 4 and 6 is recommended. i f = 0 ma t a = 25 c r l = 1.9 k ? i f = 16 ma t a = 25 c r l = 1.9 k ?
6 figure 7. logic high output current vs. temperature. figure 8. small-signal current transfer ratio vs. quiescent input current. figure 4. current transfer ratio vs. temperature. figure 5. propagation delay vs. temperature. figure 6. propagation delay time vs. load resistance. figure 1. dc and pulsed transfer characteristics. figure 2. current transfer ratio vs. input current. figure 3. input current vs. forward voltage. 10 5 0 01020 v o output voltage v 40 ma 35 ma 30 ma 25 ma 20 ma 15 ma 10 ma i = 5 ma f t = 25 c v = 5.0 v a cc i o output current ma normalized i = 16 ma v = 0.4 v v = 5 v t = 25 c f o cc a 1.5 1.0 0.5 0.1 0 1 10 100 normalized current transfer ratio i f input current ma v f forward voltage volts 100 10 0.1 0.01 1.10 1.20 1.30 1.40 i f forward current ma 1.60 1.50 1.0 0.001 1000 i f v f + t a = 25 c 1.1 1.0 0.9 0.8 0.7 0.6 -60 -20 normalized current transfer ratio t a temperature c f cc a 20 60 140 o normalized i = 16 ma v = 0.4 v v = 5 v t = 25 c 100 2000 1500 1000 500 0 -60 -20 20 60 100 t a temperature c t p propagation delay ns t phl t plh r l = 1.9 k ? i f = 16 ma, v cc = 5.0 v 3.0 2.0 1.0 0.1 4 0.6 0.4 3 2 1 0.2 8 7 6 5910 0.8 r l load resistance k ? t plh t phl v cc = 5.0 v t = 25 c i f = 10 ma i f = 16 ma t p propagation delay s a t a temperature c i f = 0 v o = v cc = 5.0 v -50 -25 0 +25 +50 +75 +100 10 +4 10 -2 10 -1 10 0 10 +1 10 +2 10 +3 i oh logic high output current na ? i f ? i o small signal current transfer ratio 0 0.10 0.20 0.30 0 i f quiescent input current ma 25 16 4812 t a = 25 c, r l = 100 ? , v cc = 5 v
7 figure 11. test circuit for transient immunity and typical waveforms. figure 10. switching test circuit. figure 9. frequency response. f frequency mhz 0 -20 0.01 0.1 normalized response db 1.0 -25 10 -30 t a = 25 c i f = 16 ma -15 -10 -5 r l = 100 ? r l = 220 ? r l = 470 ? r l = 1 k ? 1 3 6 5 4 20 k ? set i f +5 v ac input 0.1 f 500 ? 100 ? 2n3063 1.5 v dc 0.25 v p-p ac 0.1 f +5 v v o r l v o pulse gen. z o = 50 ? t r = 5 ns i f monitor i f 0.1f r l c l = 15 pf 100 ? 0 t phl t plh v o i f v ol 1.5 v 1.5 v 5 v +5 v 1 3 6 5 4 10% duty cycle 1/f 100 s v o i f 0.1f r l a b pulse gen. v cm + v ff v o v ol v o 0 v 10% 90% 90% 10% switch at a: i = 0 ma f switch at b: i = 1.6 ma f v cm t r t f 5 v v cc 10 v t r , t f = 16 ns 1 3 6 5 4 r cc (see note 10) 220 ?
www.agilent.com/semiconductors for product information and a complete list of distributors, please go to our web site. for technical assistance call: americas/canada: +1 (800) 235-0312 or (916) 788-6763 europe: +49 (0) 6441 92460 china: 10800 650 0017 hong kong: (+65) 6756 2394 india, australia, new zealand: (+65) 6755 1939 japan: (+81 3) 3335-8152 (domestic/interna- tional), or 0120-61-1280 (domestic only) korea: (+65) 6755 1989 singapore, malaysia, vietnam, thailand, philippines, indonesia: (+65) 6755 2044 taiwan: (+65) 6755 1843 data subject to change. copyright ? 2004 agilent technologies, inc. obsoletes 5989-0792en december 28, 2004 5989-2117en


▲Up To Search▲   

 
Price & Availability of HCPL-M452

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X